An Exploration of Document Impact on Graph-Based Multi-Document Summarization
نویسنده
چکیده
The graph-based ranking algorithm has been recently exploited for multi-document summarization by making only use of the sentence-to-sentence relationships in the documents, under the assumption that all the sentences are indistinguishable. However, given a document set to be summarized, different documents are usually not equally important, and moreover, different sentences in a specific document are usually differently important. This paper aims to explore document impact on summarization performance. We propose a document-based graph model to incorporate the document-level information and the sentence-to-document relationship into the graph-based ranking process. Various methods are employed to evaluate the two factors. Experimental results on the DUC2001 and DUC2002 datasets demonstrate that the good effectiveness of the proposed model. Moreover, the results show the robustness of the proposed model.
منابع مشابه
A survey on Automatic Text Summarization
Text summarization endeavors to produce a summary version of a text, while maintaining the original ideas. The textual content on the web, in particular, is growing at an exponential rate. The ability to decipher through such massive amount of data, in order to extract the useful information, is a major undertaking and requires an automatic mechanism to aid with the extant repository of informa...
متن کاملGraph-based models for multi-document summarization
University of Ljubljana Faculty of Computer and Information Science Ercan Canhasi Graph-based models for multi-document summarization is thesis is about automatic document summarization, with experimental results on general, query, update and comparative multi-document summarization (MDS). We describe prior work and our own improvements on some important aspects of a summarization system, incl...
متن کاملQuery-focused Multi-Document Summarization: Combining a Topic Model with Graph-based Semi-supervised Learning
Graph-based learning algorithms have been shown to be an effective approach for query-focused multi-document summarization (MDS). In this paper, we extend the standard graph ranking algorithm by proposing a two-layer (i.e. sentence layer and topic layer) graph-based semi-supervised learning approach based on topic modeling techniques. Experimental results on TAC datasets show that by considerin...
متن کاملiNeATS: Interactive Multi-Document Summarization
We describe iNeATS – an interactive multi-document summarization system that integrates a state-of-the-art summarization engine with an advanced user interface. Three main goals of the system are: (1) provide a user with control over the summarization process, (2) support exploration of the document set with the summary as the staring point, and (3) combine text summaries with alternative prese...
متن کاملA Proposed Textual Graph Based Model for Arabic Multi-document Summarization
Text summarization task is still an active area of research in natural language preprocessing. Several methods that have been proposed in the literature to solve this task have presented mixed success. However, such methods developed in a multi-document Arabic text summarization are based on extractive summary and none of them is oriented to abstractive summary. This is due to the challenges of...
متن کامل